EXO-Planet Paper features observations from two members

[et_pb_section fb_built="1" _builder_version="4.7.4" _module_preset="default" global_colors_info="{}"][et_pb_row _builder_version="4.7.4" _module_preset="default" global_colors_info="{}"][et_pb_column type="4_4" _builder_version="4.7.4" _module_preset="default" global_colors_info="{}"][et_pb_text _builder_version="4.7.4" _module_preset="default" global_colors_info="{}"]

Members Simon Dawes and Martin Crow have been named as contributors on a scientific paper published this week, Martin and Simon along with other amateur and professional astronomers have been observing exo-planet transits - each observation takes between 4 and 5 hours typically so is quite a commitment. Well done Mrtin and Simon and all the other amateur astronomers who submitted observations.

Abstract 

The Ariel mission will observe spectroscopically around 1000 exoplanets to further characterise their atmospheres. For the mission to be as efficient as possible, a good knowledge of the planets' ephemerides is needed before its launch in 2028. While ephemerides for some planets are being refined on a per-case basis, an organised effort to collectively verify or update them when necessary does not exist. In this study, we introduce the ExoClock project, an open, integrated and interactive platform with the purpose of producing a confirmed list of ephemerides for the planets that will be observed by Ariel. The project has been developed in a manner to make the best use of all available resources: observations reported in the literature, observations from space instruments and, mainly, observations from ground-based telescopes, including both professional and amateur observatories. To facilitate inexperienced observers and at the same time achieve homogeneity in the results, we created data collection and validation protocols, educational material and easy to use interfaces, open to everyone. ExoClock was launched in September 2019 and now counts over 140 participants from more than 15 countries around the world. In this release, we report the results of observations obtained until the 15h of April 2020 for 119 Ariel candidate targets. In total, 632 observations were used to either verify or update the ephemerides of 83 planets. Additionally, we developed the Exoplanet Characterisation Catalogue (ECC), a catalogue built in a consistent way to assist the ephemeris refinement process. So far, the collaborative open framework of the ExoClock project has proven to be highly efficient in coordinating scientific efforts involving diverse audiences. Therefore, we believe that it is a paradigm that can be applied in the future for other research purposes, too.

Full article is available here

 

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

An Investigation into the Phase Anomaly of Venus

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text]

R. H. CHAMBERS AND J. TAYLOR

Introduction

It has been known for some time that a difference between observed and theoretical phase of Venus is apparent, not only at dichotomy (Schröter's Effect) but throughout the planet's cycle. Warner [1] has shown that the magnitude of this difference varies according to the phase of the planet, being ± 10%, near 10% and 90% illumination.
There has been considerable speculation whether this effect is due to conditions on the planet itself or to observing errors. Agreement between individuals at any one elongation is poor but most observers are convinced of the reality of the phenomenon, although Cattermole et al..[2] have pointed out the difficulties in obtaining consistent and accurate results when known standards are available for comparison.
Experimental Programme

As most measurements have been made from drawings of the planet plus a few micrometer observations, it was considered that a different approach to the problem would be of value. Accordingly, it was decided to use a calibrated model as a standard for comparison with Venus in the optical train of the telescope. The study was divided into three separate experiments:
1. With one model alone. To make drawings and compare the measurements of phase from these drawings with the known phase of the model.
2. With two models. Using one model as a fixed standard, to vary the other until it matched the phase of the first and to record any difference.
3. With one model. Arranging for the model to be seen in the same field of view as Venus and varying the model to match the planet's phase.
It will be seen that experiment I was a check on the normal methods of ascertaining the phase of Venus and experiment 2, a necessary precursor to experiment 3 was designed to assess how accurately one object could be matched to another.
Twenty three people took part in experiment I and twenty one in experiment 2. Experiment 3 is still under consideration but the results so far obtained are thought to be of sufficient interest to warrant publication before the study is complete.

Experiment I

Apparatus

  • One elbow telescope on altazimuth mounting;
  • One identification telescope on altazimuth mounting;
  • One Venus phase simulator (V.P.S.), shown in figure 1.

The V.P.S. consisted of a table tennis ball painted black on half of the sphere, illuminated from within by a flash light bulb and suitably mounted over a platform containing a scale of divisions giving an accurate measurement of phase. The sphere assembly could be rotated and the simulated phase read off the scale. A sighting device was incorporated to facilitate the accurate alignment of the V.P.S. with the observer.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="2_3"][et_pb_text _builder_version="3.9"]

Method of use

The two telescopes were set up about twelve yards from the V.P.S. and carefully lined up with it, the identification telescope being above and behind the elbow telescope so that observations could be conducted simultaneously from both instruments.
Each observer was issued with a sheet of paper on which was drawn a circle of approximately five inches diameter. During the course of the experiment the V.P.S. was set at a number of known phase angles and each observer
sketched on the paper the phase as seen through the telescopes. The experiment was carried out with the V.P.S. in the dark and without the observer having knowledge of the setting value

[/et_pb_text][/et_pb_column][et_pb_column type="1_3"][et_pb_text _builder_version="3.9"]

PAPERSVENUS01

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="1_3"][et_pb_text _builder_version="3.9"]

PAPERSVENUS02

[/et_pb_text][/et_pb_column][et_pb_column type="2_3"][et_pb_text _builder_version="3.9"]

A total of 240 observations were recorded from 23 different observers. These are shown in Table I and in graphical form in Figure 2, where the standard deviation of each set of figures is also plotted. No apparent difference was recorded between the estimates from the two telescopes.

PAPERS_VENUS03

 

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

Experiment 2

Apparatus

  • One elbow telescope on altazimuth mounting; Two Venus phase simulators

Method of use

The two simulators were set up twelve yards from the telescope with the axes of the spheres in the same vertical plane so that through the telescope one sphere appeared above the other. The first V.P.S. was set at a particular phase and the other was varied by an operator under instructions from the observer looking through the telescope. When the observer considered the two images were matched, the setting of the second V.P.S. was noted by the operator. The experiment was carried out in the dark.

Results

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="2_3"][et_pb_text _builder_version="3.9"]

A total of 21 observers gave 63 observations. These are tabulated in Table 2 and shown in graphical form in Figure 3, where the standard deviations are also plotted.

PAPERS_VENUS05

[/et_pb_text][/et_pb_column][et_pb_column type="1_3"][et_pb_text admin_label="table image" _builder_version="3.9"]

PAPERS_VENUS04

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

Discussion and Conclusions

Examination of Figure 2 reveals that the differences between the observed and actual phases of the model Venus follow a regular pattern, being highly positive at phases in the order of 3o per cent and negative at phases around 70%. Reference to Figure 2 of Warner's paper,' where a large number of actual measurements of the planet has been plotted, shows a similar variation with phase. It is true that at 50 % phase Warner shows a positive (O–C) in contrast to the negative (O–C) in Figure 2, but the magnitude of this difference is not great, and it must be remembered that the experiments described in this paper were carried out under ideal conditions, which makes it hardly surprising that minor differences in detail should result. What is of greater importance is the close similarity between the two curves which points to a common origin for both sets of data. It is difficult to draw any other conclusion than that the causal factor lies in the observer and the dif¬ferences between the observed and theoretical phases of Venus are of physiological origin.

Attention is also drawn to the increased scatter of results at high and low percentage illumination, indicating the difficulty of the observation and the imprecise nature of any values obtained.
Although the data obtained in experiment 2 are not extensive, they do point to the conclusion that a comparison can be made between two images that is of sufficient accuracy for the purpose. It is intended that further confirmatory experiments will be carried out before the final phase of the study is completed.

Acknowledgments

Thanks are due to Mr J. Wright who constructed one of the Venus phase simulators, and to members of the Crayford Manor House Astronomical Society who took part in the experiments with such enthusiasm.

References

I Warner, B., J.B.A.A., 73, 65.
2 Cattermole, P. J., Nicholson, I. and Moore, P., J.B.A.A., 73, 118.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Double Star Measurements with a Meade 12mm Astrometric Eyepiece in 2017

Neil Webster, REDACTED

e-mail:     REDACTED

 

Introduction

The following measurements were made throughout 2017 using a Meade 12mm astrometric illuminated reticle eyepiece plus 2.5x powermate attached to a Altair Astro 115mm refractor (focal length 805mm, f7). The total magnification was 167.5x with a field of view of 0.3 degrees.

All final separation values were calculated from a calibration determined by the timing/transit method (Simple Techniques of Measurement: E.T.H. Teague, Chapter 12 in Observing and Measuring Visual Double Stars ed. Argyle, pub. Springer). The final calculated value used was:

12’’.49 +/- 0’’.04 per division on the reticle measuring scale.

Position Angle measurements were made using the method previously outlined in DSSC 25 which involves using the directional west arrow on the handset to electronically steer the primary to the outer edge of the protractor scale rather than turning off the mount motor for an unaided drift. This has proven to be very reliable and greatly increases the number of measures that can be performed during an evening. As previously stated it relies on as precise polar alignment as possible.

10 separation and 10 position angle measurements (N = 20) were performed on the same evening for each pair and the final results and associated uncertainties calculated.

Extensive use was made of the Astroplanner software. Separations throughout the year were limited to a range from 15 arc-seconds to 100 arc-seconds. The faintest magnitude measured was 8.5. These values were out of necessity given the limiting magnification, the high calibration value and the considerable local light pollution. The red light in the eyepiece, even when used at its minimum intensity, also limits the faintest magnitude that can be reasonably measured.

These parameters were set up in the software for whatever constellation was convenient at the date of measurement. All measurements made on any evening were for doubles in close proximity (usually in order of increasing RA) so time was not wasted slewing between distant pairs. This allowed far more measurements to be made than for previous years.

As most of these systems are comparatively wide the orbits are generally very long (1,000 years+) and very few have accurate orbital calculations. Residuals (from the online version of 6th USNO Catalogue of Orbits of Visual Binary Stars) have been given for the few systems calculated but none have a better than grade 4 certainty.

Values from the Fourth Catalogue of Interferometric Measurements have provided a more extensive set of residuals but most of these are from 1991 which is 26 years before the author’s measurements. Although many of the systems have not changed in this time some have and, in certain cases, this shows in the larger residuals calculated.

Where residuals are large (greater than 1o in PA or 1” in separation) relative proper motions have been analysed. Any notable differences between the components’ proper motions that may explain the larger than average residuals are presented in table 4.

Table 5 presents three alternative, more favourable residuals for three systems that have larger than expected residuals.

It should be stressed that these final two tables represent very basic analysis and further professional data and work would be needed to clarify the exact natures and evolving properties of these systems.    

 

References:

The Cambridge Double Star Atlas, (Mullany J. Tirion W. pub. Cambridge)

Observing and Measuring Visual Double Stars (ed. Argyle R.W. pub. Springer)

Washington Double Star Catalogue (Mason, B.D., Wycoff, G.L. & Hartkopf, W.I.):

http://ad.usno.navy.mil/proj/WDS

Sixth Catalogue of Orbits of Visual Binary Stars (Hartkopf, W.I., Mason, B.D. & Worley, C.E.):

http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/orb6/sixth-catalog-of-orbits-of-visual-binary-stars

Fourth Catalogue of Interferometric Measurements of Binary Stars:

 http://www.usno.navy.mil/USNO/astrometry/optical-IR-prod/wds/int4

Astroplanner:

 http://www.astroplanner.net/

 

Table 1: Measurements

 

Pair Comp RA Dec Va Vb PA (o) +/- Sep (‘’) +/- Epoch

2017 +

N Obs
STTA 254 AB 00013 +6021 7.40 8.33 89.2 0.1 58.0 0.2 0.038 20 WST
STF 3053 AB 00026 +6606 5.96 7.17 69.6 0.1 15.2 0.1 0.665 20 WST
STTA 1 AB 00141 +7601 7.39 7.81 103.3 0.1 73.4 0.3 0.835 20 WST
H 5 17 AB 00369 +3343 4.36 7.08 172.5 0.1 35.7 0.2 0.717 20 WST
HJ 1986 AB 00396 +8445 7.96 8.50 68.7 0.1 40.5 0.2 0.835 20 WST
                         
STTA 5   00400 +7652 6.86 8.78 141.9 0.1 118.3 0.4 0.038 20 WST
H 5 18 AD 00405 +5632 2.35 8.98 282.4 0.1 70.6 0.3 0.038 20 WST
STFA 1 AB

 

00464 +3057 7.25 7.43 46.0 0.1 48.0 0.3 0.717 20 WST
H 582 AB 00474 +5106 7.97 8.35 75.0 0.1 57.2 0.2 0.665 20 WST
HJ 2028 AB 01166 +7402 7.06 7.88 204.1 0.3 61.5 0.1 0.665 20 WST
                         
H 5 12 AB 01579 +2336 4.80 6.65 47.9 0.1 37.2 0.2 0.859 20 WST
STF 222 AB 02109 +3902 6.05 6.71 36.0 0.1 16.6 0.2 0.717 20 WST
S 405 AB 02128 +7941 6.47 7.15 277.3 0.1 55.6 0.3 0.835 20 WST
STF 239 AB 02174 +2845 7.09 7.83 211.6 0.1 13.6 0.1 0.878 20 WST
STTA 26 AB 02197 +6002 6.95 7.30 201.0 0.1 62.7 0.3 0.717 20 WST
                         
STTA 27 AB 02268 +1034 6.72 8.31 31.2 0.1 73.8 0.3 0.900 20 WST
CTT3 AB 02359 +6338 7.78 8.30 88.0 0.1 88.1 0.4 0.717 20 WST
STFA 5 AB 02370 +2439 6.50 7.02 275.1 0.1 37.7 0.2 0.900 20 WST
STTA 28 AB 02390 +6235 6.65 7.56 147.0 0.1 67.8 0.3 0.717 20 WST
HJ 1123 AB 02420 +4248 8.39 8.46 249.7 0.1 20.4 0.2 0.808 20 WST
                         
STT 44 AC 02422 +4242 8.47 8.32 289.9 0.1 87.2 0.3 0.808 20 WST
STF 292 AB 02425 +4016 7.56 8.23 212.3 0.1 23.5 0.2 0.786 20 WST
STF 307 AB 02507 +5554 3.76 8.50 300.5 0.2 30.4 0.3 0.808 20 WST
STTA 31 AB 03009 +5940 7.33 8.03 230.8 0.1 74.2 0.3 0.717 20 WST
STTA 33 AC 03221 +6244 7.73 7.80 111.9 0.1 114.8 0.4 0.134 20 WST
                         
STFA 7 AB 03311 +2744 7.41 7.81 233.9 0.1 44.1 0.2 0.900 20 WST
STT 57 AC 03334 +2322 7.17 7.67 33.1 0.1 68.7 0.1 0.900 20 WST
STF 396 AB 03335 +5846 6.43 7.68 246.0 0.1 20.7 0.2 0.134 20 WST
S 430 AB 03383 +4448 7.21 7.53 96.0 0.1 41.0 0.2 0.808 20 WST
STTA 36 A BC 03400 +6352 6.92 8.27 71.2 0.2 45.8 0.2 0.134 20 WST
                         
STF 434 AB 03440 +3822 7.80 8.28 83.0 0.1 34.0 0.2 0.808 20 WST
S 437 AB C 03463 +2411 8.13 7.70 308.2 0.2 38.8 0.2 0.900 20 WST
STFA 8 BC 03475 +2406 6.27 8.22 345.0 0.1 86.2 0.1 0.900 20 WST
S 436   03493 +5707 6.46 7.17 76.0 0.1 58.3 0.3 0.227 20 WST
STTA 40 AB 03494 +2423 6.58 7.53 309.0 0.1 87.4 0.1 0.900 20 WST
                         
STF 485 AE 04078 +6220 6.91 6.94 305.2 0.1 17.9 0.2 0.227 20 WST
STTA 45 AB 04155 +0611 6.38 7.01 316.0 0.1 63.7 0.1 0.900 20 WST
STTA 44 AB 04173 +4613 7.12 7.99 321.3 0.1 58.6 0.2 0.808 20 WST
SHJ 40 AB 04204 +2721 5.08 7.51 258.8 0.1 48.7 0.1 0.900 20 WST
S 445 AB 04210 +5015 7.31 8.19 328.0 0.1 71.0 0.3 0.808 20 WST
                         
STTA 46 AB 04211 +5532 7.68 7.95 159.8 0.1 99.9 0.1 0.227 20 WST
STF 534 AB 04240 +2418 6.36 7.94 291.0 0.1 29.4 0.2 0.900 20 WST
STF 533 AB 04244 +3419 7.30 8.49 61.2 0.1 20.2 0.2 0.835 20 WST
STF 548   04289 +3022 6.44 8.03 35.0 0.1 14.2 0.2 0.900 20 WST
WEB 2 AD 04327 +5958 5.72 8.45 36.0 0.1 54.6 0.3 0.134 20 WST
                         
S 451   04363 +4722 7.59 7.91 202.0 0.1 55.7 0.3 0.835 20 WST
STTA 53 AB 04374 +0034 7.55 7.57 352.0 0.1 78.8 0.3 0.900 20 WST
OPI 5 AC 04382 +7128 7.67 8.50 279.3 0.1 111.9 0.4 0.227 20 WST
S 455 AB 04422 +2257 4.24 7.02 213.8 0.1 62.5 0.1 0.900 20 WST
S 459 AB 05034 +6027 4.12 7.44 209.1 0.1 84.2 0.3 0.227 20 WST
                         
STF 618 AB 05036 +6305 7.68 7.98 211.0 0.1 33.3 0.3 0.230 20 WST
STFA 13 AB 05061 +5858 5.20 6.21 9.5 0.2 177.7 0.6 0.230 20 WST
STTA 61 AB 05096 +2947 6.72 8.49 245.0 0.1 68.4 0.3 0.347 20 WST
STF 698 AB 05252 +3451 6.65 8.33 347.01 0.1 31.2 0.1 0.367 20 WST
STFA 63   05308 +3950 6.49 7.69 277.0 0.1 75.2 0.3 0.367 20 WST
                         
STTA 72 AC 06247 +5940 7.58 7.58 322.6 0.1 134.5 0.5 0.120 20 WST
S 514 AC 06268 +5825 5.38 7.92 272.0 0.1 94.9 0.4 0.120 20 WST
SHJ 70 AB 06278 +2047 6.65 8.18 201.9 0.1 25.0 0.1 0.271 20 WST
STF 924 AB 06323 +1747 6.31 6.88 211.5 0.2 20.7 0.3 0.271 20 WST
S 524 AB 06341 +2207 7.17 7.41 244.3 0.2 53.0 0.2 0.295 20 WST
                         
STF 994 AB 06595 +3706 7.88 8.14 54.8 0.1 26.4 0.2 0.367 20 WST
HJL 1046 AB 07097 +6045 6.76 7.95 164.0 0.1 184.0 0.6 0.120 20 WST
ES 2624   07219 +4614 8.12 8.25 87.8 0.1 80.9 0.4 0.120 20 WST
STF 1065   07223 +5009 7.51 7.67 254.6 0.2 14.1 0.2 0.120 20 WST
STF 1062 AB 07229 +5517 5.76 6.71 315.2 0.3 15.0 0.2 0.131 20 WST
                         
STTA 84 AB 07254 +5633 7.72 7.75 322.2 0.1 112.8 0.4 0.131 20 WST
STF 1090 AB 07265 +1831 7.27 8.17 98.0 0.1 60.8 0.3 0.295 20 WST
STF 1051 AC 07266 +7305 7.60 7.79 84.0 0.1 31.7 0.2 0.230 20 WST
STTA 87   07389 +4229 7.59 7.78 357.0 0.1 61.4 0.2 0.131 20 WST
STF 1122   07459 +6509 7.78 7.80 184.9 0.1 14.4 0.2 0.230 20 WST
                         
SHJ 86 AB 08025 +6305 6.15 7.53 80.0 0.1 50.7 0.2 0.230 20 WST
STTA 91 AB 08195 +3503 7.26 8.36 209.5 0.1 94.7 0.3 0.131 20 WST
ES 2631   09056 +5018 7.84 8.47 259.0 0.1 78.9 0.4 0.268 20 WST
STF 1315   09128 +6141 7.33 7.65 26.9 0.2 24.9 0.1 0.268 20 WST
STF 1321 AB 09144 +5241 7.79 7.88 97.1 0.1 17.1 0.3 0.268 20 WST
                         
S 598 AB 09287 +4536 5.50 7.80 159.7 0.2 69.7 0.3 0.268 20 WST
STF 1369 AB 09354 +3958 6.98 7.98 149.0 0.1 25.0 0.1 0.134 20 WST
STF 1369 AC 09354 +3958 6.98 8.42 322.9 0.1 116.3 0.4 0.134 20 WST
STF 1369 AC 09354 +3958 6.98 8.42 322.9 0.1 116.3 0.4 0.134 20 WST
STF 1369 BC 09354 +3958 7.98 8.42 324.0 0.1 141.6 0.5 0.134 20 WST
                         
STF 1399   09570 +1946 7.65 8.36 175.9 0.1 30.2 0.2 0.246 20 WST
STF 1415 AB 10178 +7104 6.65 7.27 168.0 0.1 16.6 0.2 0.268 20 WST
HZG8 AC 11045 +3814 6.04 7.56 83.1 0.2 150.1 0.5 0.309 20 WST
S 621 AB 11113 +6601 8.31 8.34 53.4 0.1 102.4 0.5 0.309 20 WST
S 621 AC 11113 +6601 8.31 8.49 314.0 0.1 166.7 0.6 0.309 20 WST
                         
STF 1516 AB 11152 +7329 7.77 8.23 102.9 0.1 67.6 0.3 0.364 20 WST
STF 1540 AB 11268 +0301 6.55 7.50 149.1 0.1 28.1 0.2 0.246 20 WST
STFA 19 AB 11279 +0251 5.05 7.47 182.0 0.1 88.1 0.3 0.246 20 WST
STF 1565   11396 +1900 7.26 8.41 303.9 0.1 22.2 0.1 0.246 20 WST
STTA 112 AB 11545 +1925 8.28 8.49 35.1 0.1 73.9 0.3 0.246 20 WST
                         
SHJ 136   12110 +8143 6.15 8.25 73.7 0.1 71.9 0.3 0.235 20 WST
STF 1625 AB 12162 +8008 7.24 7.78 217.0 0.1 14.2 0.2 0.235 20 WST
STF 1694 AB 12492 +8325 5.29 5.74 324.1 0.1 21.8 0.2 0.235 20 WST
STTA 123 AB 13271 +6444 6.65 7.03 145.1 0.1 69.2 0.3 0.402 20 WST
STTA 127 AB 13510 +6819 6.53 8.32 61.8 0.1 87.4 0.1 0.402 20 WST
                         
STF 1821 AB 14135 +5147 4.53 6.62 235.8 0.1 13.1 0.2 0.298 20 WST
STFA 26 AB 14162 +5122 4.76 7.39 32.0 0.1 329.0 0.2 0.298 20 WST
STF 1850   14286 +2817 7.11 7.56 261.5 0.1 25.1 0.1 0.298 20 WST
SHJ 191   14596 +5352 6.86 7.57 341.0 0.1 40.0 0.1 0.298 20 WST
STF 1972 AB 15292 +8027 6.64 7.30 80.0 0.1 31.8 0.2 0.835 20 WST
                         
STF 1964 AC 15382 +3615 8.07 8.06 86.0 0.1 15.0 0.1 0.298 20 WST
STF 2010 AB 16081 +1703 5.10 6.21 12.0 0.1 27.1 0.2 0.386 20 WST
SHJ 233   16315 +0818 7.07 8.28 70.8 0.1 59.2 0.3 0.402 20 WST
STFA 30 AC 16362 +5255 5.38 5.50 193.3 0.1 90.0 0.3 0.402 20 WST
STFA 30 BC 16362 +5255 6.42 5.50 194.0 0.1 90.1 0.4 0.402 20 WST
                         
STF 2079   16396 +2300 7.56 8.13 90.6 0.1 16.7 0.2 0.386 20 WST
STFA 31 AB 16406 +0413 5.76 6.92 229.0 0.1 69.3 0.4 0.400 20 WST
STTA 149   16435 +2043 7.24 8.38 134.7 0.1 97.4 0.3 0.386 20 WST
S 689 AB 17246 +3913 7.48 8.44 197.0 0.1 89.2 0.4 0.400 20 WST
STFA 35   17322 +5511 4.87 4.90 311.2 0.2 62.1 0.2 0.402 20 WST
                         
STF 2241 AB 17419 +7209 4.60 5.59 15.5 0.1 30.5 0.2 0.402 20 WST
STTA 163 AB 17562 +6237 7.77 7.59 53.0 0.1 54.3 0.3 0.416 20 WST
STF 2259   17590 +3003 7.27 8.44 277.0 0.1 19.5 0.2 0.400 20 WST
STF 2273 AB 17592 +6409 7.31 7.63 283.3 0.2 22.0 0.2 0.416 20 WST
STF 2308 AB 18002 +8000 5.70 6.00 230.2 0.1 18.7 0.3 0.416 20 WST
STF 2278 AB 18029 +5626 7.78 8.14 29.0 0.1 36.3 0.1 0.441 20 WST
STF 2278 AC 18029 +5626 7.78 8.53 38.0 0.1 34.3 0.2 0.441 20 WST
H 5 93   18130 +2815 8.16 8.28 136.0 0.1 54.7 0.2 0.400 20 WST
STF 2323 AC 18239 +5848 5.06 7.95 19.0 0.1 89.1 0.3 0.441 20 WST
STF 2323 BC 18239 +5848 8.07 7.95 19.5 0.1 86.5 0.3 0.441 20 WST
                         
STF 2372 AB 18421 +3445 6.45 7.73 82.0 0.1 25.0 0.1 0.517 20 WST
STFA 38 AD 18448 +3736 4.34 5.62 150.0 0.1 43.7 0.1 0.517 20 WST
STFA 39 AB 18501 +3322 3.63 6.69 148.8 0.1 45.7 0.3 0.517 20 WST
STTA 176 AB 18545 +0154 7.45 7.51 111.7 0.1 94.0 0.4 0.649 20 WST
SHJ 282 AC 18549 +3358 6.14 7.60 349.0 0.1 45.6 0.3 0.517 20 WST
                         
STF 2420 AB 18512 +5923 4.77 8.26 317.0 0.1 37.5 0.1 0.441 20 WST
STF 2474 AB 19091 +3436 6.78 7.88 263.7 0.1 15.5 0.2 0.517 20 WST
STTA 177 AC 19126 +1651 7.11 8.02 276.0 0.1 98.4 0.4 0.654 20 WST
STTA 178   19153 +1505 5.69 7.64 267.9 0.1 89.6 0.3 0.649 20 WST
STTA 181 AB 19201 +2639 7.39 7.50 359.0 0.1 62.8 0.3 0.517 20 WST
                         
STFA 43 AB 19307 +2758 3.19 4.68 54.0 0.1 35.0 0.2 0.550 20 WST
STF 2549 AD 19312 +6319 8.34 8.03 269.7 0.3 55.6 0.3 0.441 20 WST
STFA 44   19332 +6010 6.47 8.19 287.0 0.1 74.9 0.1 0.441 20 WST
ARN 82 AB 19364 +3541 8.10 8.43 34.1 0.1 43.5 0.2 0.564 20 WST
H 626 AB 19373 +1628 5.77 8.35 82.2 0.1 87.4 0.1 0.654 20 WST
                         
STFA 46 AB 19418 +5032 6.00 6.23 132.5 0.1 39.9 0.2 0.564 20 WST
STTA 188 AB 19428 +3741 7.71 7.98 121.0 0.1 61.1 0.2 0.564 20 WST
H 5 137 AB 19459 +3501 6.22 8.18 24.0 0.1 37.7 0.2 0.564 20 WST
STFA 48 AB 19534 +2020 7.14 7.34 147.0 0.1 41.8 0.2 0.649 20 WST
AC 16 AC 19579 +2715 7.81 7.97 136.0 0.1 92.3 0.1 0.649 20 WST
                         
STTA 200 AB 20023 +6438 6.36 8.06 332.3 0.2 99.3 0.4 0.441 20 WST
ES 25 AF 20060 +3546 7.89 6.78 329.0 0.1 95.7 0.4 0.578 20 WST
SHJ 314 AF 20060 +3547 6.78 7.30 28.0 0.1 36.2 0.1 0.578 20 WST
WEB 12 AB 20078 +1950 8.36 8.37 77.0 0.1 40.4 0.2 0.654 20 WST
HJ 606 AB 20084 +3808 7.98 8.12 228.5 0.1 44.0 0.2 0.578 20 WST
                         
STF 2637 AC 20099 +2055 6.56 7.52 221.5 0.1 91.8 0.4 0.654 20 WST
S 738 AB 20106 +3338 7.76 8.43 105.5 0.1 41.3 0.3 0.578 20 WST
STF 2664 AB 20196 +1300 8.07 8.34 321.2 0.1 27.1 0.2 0.654 20 WST
STTA 207 AC 20229 +4259 6.41 8.01 64.6 0.1 85.8 0.3 0.578 20 WST
STF 2687 AB 20264 +5638 6.37 8.31 117.5 0.1 25.5 0.2 0.578 20 WST
                         
STF 2691 AB 20297 +3808 8.14 8.45 31.0 0.1 17.0 0.2 0.578 20 WST
STF 2690 A BC 20312 +1116 7.12 7.39 255.8 0.1 17.7 0.2 0.654 20 WST
STF 2703 AB 20368 +1444 8.35 8.42 289.0 0.1 25.0 0.1 0.654 20 WST
STTA 211 AB 20493 +5845 6.85 7.88 268.0 0.1 95.0 0.3 0.835 20 WST
STF 2758 AB 21069 +3845 5.20 6.05 152.4 0.2 31.8 0.2 0.578 20 WST
                         
BU 69 AC 21026 +2141 8.35 8.02 241.0 0.1 74.6 0.3 0.649 20 WST
STF 2769 AB 21105 +2227 6.65 7.42 299.0 0.1 18.7 0.1 0.649 20WST WST
STFA 56 AB 21377 +0637 6.18 7.50 348.0 0.1 39.0 0.2 0.788 20 WST
GUI 36 CD 21390 +5729 7.48 7.53 324.3 0.1 30.7 0.2 0.835 20 WST
STF 2816 AD 21390 +5729 5.73 7.53 338.9 0.1 20.4 0.2 0.848 20 WST
                         
STT 447 AE 21395 +4144 7.67 8.48 44.3 0.1 28.9 0.2 0.578 20 WST
STTA 222 AB 21441 +0709 7.49 8.47 257.4 0.1 87.4 0.1 0.788 20 WST
ES 382 AC 21509 +3240 8.28 8.42 322.0 0.1 58.3 0.4 0.788 20 WST
STF 2840 AB 21520 +5548 5.64 6.42 196.3 0.1 18.0 0.2 0.846 20 WST
S 800 AB 21538 +6237 7.07 7.91 145.0 0.1 62.5 0.1 0.846 20 WST
                         
STF 2841 A BC 21543 +1943 6.45 7.99 108.0 0.1 22.2 0.2 0.786 20 WST
ARY 45 AB 22083 +6959 7.86 8.11 206.9 0.1 66.6 0.2 0.846 20 WST
STF 2872 A BC 22086 +5917 7.14 7.98 315.0 0.1 22.4 0.1 0.846 20 WST
STF 2893 AB 22129 +7318 6.19 7.91 347.2 0.1 29.2 0.2 0.846 20 WST
STTA 234 AC 22269 +4943 8.15 8.49 133.7 0.1 36.3 0.1 0.657 20 WST
                         
STFA 58 AC 22292 +5825 4.21 6.11 190.8 0.1 40.6 0.2 0.846 20 WST
STF 2922 AB 22359 +3938 5.66 6.29 185.0 0.1 22.4 0.1 0.657 20 WST
STTA 236 AB D 22361 +7253 7.56 8.42 136.0 0.1 42.7 0.2 0.848 20 WST
BU 277 AB D 22395 +4123 8.26 8.50 47.0 0.1 78.1 0.3 0.657 20 WST
HJ 1823 AC 22518 +4119 7.06 8.11 337.5 0.1 81.6 0.3 0.657 20 WST
                         
STTA 238 AB 22527 +6759 7.02 7.58 280.0 0.1 69.2 0.3 0.848 20 WST
STTA 241 AB 22586 +1203 8.28 8.37 160.3 0.1 84.9 0.4 0.788 20 WST
S 825 AB 23100 +3651 7.78 8.26 318.0 0.1 67.1 0.3 0.717 20 WST
STF 2985 AB 23100 +4758 7.21 8.02 256.2 0.1 15.4 0.2 0.717 20 WST
STTA 245 AB C 23260 +2742 7.92 8.50 194.8 0.1 62.5 0.1 0.788 20 WST
                         
SHJ 355 AC 23300 +5833 4.87 7.23 268.6 0.2 74.9 0.1 0.717 20 WST
STF 3041 A BC 23479 +1703 8.35 8.36 358.0 0.1 60.5 0.3 0.786 20 WST
STT 507 AC 23487 +6453 6.76 8.44 349.2 0.1 50.0 0.1 0.717 20 WST
STF 3044 AB 23530 +1155 7.27 7.91 282.5 0.1 18.7 0.1 0.788 20 WST

 

 

Table 2: Residuals from Known Orbits

 

Pair ADS (HIP) Residual (O-C) PA (0) Residual

 (O-C) Sep (‘’)

Orbit Period (yrs)

 

Date Grade
               
STF 1321 AB 7251 -1.4 +0.3 Chang 975 1972 4
STF 1540 AB (55846) +2.3 -0.5 Hopmann 32, 000 1960 5
STF 1821 AB 7173 +0.5 -0.7 Kiyaeva 6, 101 2006 5
STF 1821 AB 7173 +1.0 -1.1 Kiyaeva 6, 675 2006 5
STF 2241 AB 10759 -1.3 +0.9 Kiselev 10, 000 2009 5
               
STF 2308 AB 11061 -1.1 -0.1 Kiselev 18, 000 1996 5
STFA 46 AB 12815 -0.6 +0.1 Marcy 13, 513 1999 4
STF 2758 AB 14636 +0.3 +0.1 PKO 678 2006 4
S 825 AB 16558 -0.7 +0.3 Kiselev 110, 000 2009 5
S 825 AB 16558 -1.8 +0.3 Kiselev 98,000 2009 5
               
S 825 AB 16558 -0.8 -0.1 Kiselev 98,000 2009 5

 

(All Residuals: Observed – latest Catalogue measurement)

 

Table 3: Residuals from Fourth Catalogue of Interferometric Measurements

 

Pair ADS HIP (TYC) Epoch (catalogue) Residual

 PA (0)

Residual

 Sep (‘’)

           
STTA 254 AB BDS 12693 99 1991.61 -0.2 +0.2
STTA 254 AB BDS 12693 99 1991.61 -0.2 +0.2
STF 3053 AB   207 2003.770 -0.6 +0.2
STTA 1 AB   1124 1991.67 -0.2 -0.5
H 5 17 AB 513 2912 2003.804 -0.9 -0.2
           
HJ 1986 AB   (4619 00293) 1991.69 +1.8 +0.1
STFA 1 AB 639 3617 2003.804 -0.3 +0.9
STF 3053 AB   207 2003.770 -0.6 +0.2
STTA 5 BD+76 3145 1991.73 -0.1 +0.6
H 5 18 AD 561 3179 1991.57 +0.5 +1.5
           
H 582 AB BDS 417 3698 1991.76 -0.1 +1.8
HJ 2028 AB   5950 1991.67 +0.4 +0.1
H 5 12 AB 1563 (1757 01964) 2993.918 +0.8 +0.5
STF 222 AB 1683 10176 2003.875 +0.1 +0.1
S 405   10309 1991.73 +0.5 -0.1
           
STF 239 AB 1752 10680 1991.85 +0.1 -0.2
STTA 26 AB   10856 1991.56 +0.7 -0.7
STTA 27 AB   11390 1991.78 -0.7 +0.2
CTT3 AB   12081 1991.66 +0.1 +0.6
STFA 5 AB 1982 12189 1991.70 +0.6 -0.5
           
STTA 28 AB   16218 1991.56 -0.4 +0.0
HJ 1123 AB 2048 (2853 00022) 1991.79 +1.1 +0.3
STT 44 AC 2052 12619 1991.73 -0.1 +0.9
STF 292 AB 2057 12648 1991.70 +0.8 +0.5
STF 307 AB          
           
STTA 31 AB   14049 1991.71 +0.6 +0.6
STTA 33 AC   15686 1991.63 +0.8 -1.4
STFA 7 AB   16386 2004.115 +0.3 +0.8
STT 57 AC 2605 (1798 00480) 1991.57 -0.7 -1.0
STF 396 AB 2592 16587 2004.115 +1.7 +0.6
           
S 430 AB   16972 1991.64 +0.1 -0.1
STTA 36 A BC 2650 17118 1991.66 +0.4 -0.1
STF 434 AB 2717 17424 1991.64 -0.2 +1.0
S 437 AB C 2755 (1800 01961) 1991.64 +0.5 -0.2
STFA 8 BC   (1800 02201) 1991.68 +0.7 +0.8
           
S 436   17858 1991.70 +0.1 -0.1
STTA 40 AB   17862 1991.57 +0.1 +0.5
STF 485 AE 2984 19272 2008.0479 +0.4 +0.1
STTA 45 AB 3085 19859 1991.63 +0.3 -0.7
STTA 44 AB   20000 1991.55 -1.3 +0.3
           
SHJ 40 AB 3137 20250 1991.60 +3.3 -0.4
S 445 AB   20296 1991.56 0.0 -0.8
STTA 46 AB   20306 1991.42 0.0 +0.3
STF 534 AB 3179 20533 2002.901 +0.7 +0.7
STF 533 AB 3185 20570 2002.977 -0.1 +0.6
           
STF 548 AB 3243 20904 2012.6779 -0.9 -0.3
S 451   21437 1991.60 +0.5 -0.4
STTA 53 AB   21534 1991.58 -1.0 +0.8
OPI 5 AC   21578 1991.7 +0.1 +0.1
S 455 AB   21881 1991.56 +0.4 -0.4
           
S 459 AB 3615 23527 1991.64 0.0 +1.1
STF 618 AB   23532 1991.57 -0.4 +0.5
STFA 13 AB   23734 1991.7 +0.5 -1.0
STTA 61 AB   24016 1991.65 +0.5 -0.5
STF 698 AB 4000 25343 2002.884 -0.2 0.0
           
STFA 63   25810 1991.66 +0.8 -0.7
STTA 72 AC   (3776 01181) 1991.63 -0.2 +0.3
S 514 5036 30679 1991.67 0.0 -0.6
SHJ 70 AB 5080 30757 2002.901 -0.5 +0.0
STF 924 AB 5166 31158 2002.91 +0.6 +1.0
           
S 524 AB   31323 1991.85 +0.2 -0.5
STF 994 AB 5642 33649 1991.72 -0.4 -0.4
HJL 1046 5810 34572 1991.68 -1.3 +1.8
ES 2624   35684 1991.85 +0.6 -0.1
STF 1065 6004 35731 1991.86 0.0 -0.8
           
STF 1062 AB 6012 35785 2002.996 -0.5 +0.3
STTA 84 AB   36026 1991.62 -0.7 -0.7
STF 1090 AB 6073 36122 1991.72 -0.1 +0.0
STF 1051 AC 6028 36132 1991.76 +0.4 +0.3
STTA 87   (2966 00032) 1991.76 -0.3 -0.9
           
STF 1122 6319 (4121 01516) 1991.82 -1.3 -0.5
SHJ 86 AB   39340 1991.79 -0.5 -0.2
STTA 91 AB   40791 1991.7 -2.9 +0.8
ES 2631   44628 1991.79 +0.3 -0.5
STF 1315 7226 45206 1991.59 0.0 +0.1
           
STF 1321 7251 45343 1991.81 +6.6 -0.4
S 598   46471 1991.75 -1.4 -2.8
STF 1369 AB 7438 47053 2003.311 -0.9 +0.1
STF 1369 AC 7438 47053 1991.85 0.0 -0.4
STF 1369 BC 7438 47054 1991.86 +0.1 -0.1
           
STF 1399 7589 48785 1991.50 +0.6 -0.3
STF 1415 7705 50433 2003.251 +0.7 +0.1
HZG 8 AC 8046 54136 1991.62 +0.4 -0.2
S 621 AB   54657 1991.72 +1.6 +6.9
S 621 AC   54657 1991.73 +2.1 -4.0
           
STF 1516 AB 8100 54952 1991.77 -0.3 +10.2     (1)
STF 1540 AB   55846 1991.68 -0.6 -0.3
STFA 19 AB   55945 1991.76 +1.9 -1.1
STF 1565   56875 1991.61 -0.5 +0.6
STTA 112 AB  

 

58067 1991.75 -0.4 +0.5
           
SHJ 136   59384 1991.69 -0.7 +1.6
STF 1625 AB 8494 59836 1991.64 -1.4 -0.2
STF 1694 AB 8682 62572 2003.284 -2.2 +0.5
STTA 123 AB   65603 1991.63 -1.5 +0.2
STTA 127 AB   67589 1991.69 -1.1 +2.3
           
STF 1821 AB 9173 69483 2008.278 +0.3 -0.5
STFA 26 AB 9198 69713 2003.251 -0.3 +0.3
STF 1850 9277 79786 1991.71 +0.2 -0.3
SHJ 191 9474 73366 1991.59 -0.8 -0.3
STF 1972 AB 9696 75809 1991.69 +0.8 +0.5
           
STF 1964 AC 9731 76563 2015.400 -0.1 +0.0
STF 2010 AB 9933 79043 2003.418 -1.0 -0.3
SHJ 233   80926 1991.55 +0.1 +0.1
STFA 30 AC 10129   1991.68 -0.1 -0.2
STFA 30 BC 10129   1991.25 Suspect Catalogue Figure?? 0.0         (2)
           
STF 2079 10146 81575 1991.82 +0.1 -0.1
STFA 31 AB 10149 81641 1991.47 -0.4 -0.4
STTA 149   81880 1991.64 +0.3 +0.4
S 689 AB   85201 1991.70 +0.4 -0.5
STFA 35 10628 85829 1999.4 0.0 -0.1
           
STF 2241 AB 10759 86614 1991.7 0.0 +0.3
STTA 163 AB   87815 1991.64 +3.0 -0.4
STF 2259 10955 88055 1991.61 -0.3 -0.2
STF 2273 AB 10985 88071 1991.77 +0.1 +0.7
STF2308 AB 11061 88136 2012.7725 +0.2 -0.8
           
STF 2278 AB 11035 165502 1991.60 +1.0 +0.1
STF 2278 AC 11035 165502 1991.62 +0.9 +0.5
H 5 93   89270 1991.65 +0.1 -0.4
STF 2323 AC 11336 90156 2000.29 -0.5 +0.4
STF 2323 BC 11336 (3916 01982) 1991.41 -1.5 +0.9
           
STF 2372 AB 11593 91707 2003.418 0.0 +0.2
STFA 38 AD 11639 91971 2003.418 -0.3 -0.1
STFA 39 AB 11745 92420 1991.49 -0.6 0.0
STTA 176 AB   92794 1991.81 -0.9 -0.7
SHJ 282 AC 11834 92833 2003.697 -0.4 +0.6
           
STF 2420 AB 1179 92512 2003.628 -2.4 +1.0
STF 2474 AB 12101 94076 2013.5533 +2.0 -0.6
STTA 177 AC 12160 94377 1991.50 -2.5 -3.1
STTA 178   94624 1991.57 +0.9 -0.2
STTA 181 AB   95028 1991.62 -1.3 +1.1
           
STFA 43 AB 12540 95947 2003.418 +0.5 +0.6
STF 2549 AD 12586 96002 1991.76 -1.2 +1.0
STFA 44   96164 1991.63 +0.6 -0.4
ARN 82 AB   (2667 00321) 1991.61 -0.3 +0.2
H 626 AB 12693 96516 1991.69 +0.5 -0.7
           
STFA 46 AB 12815 96895 2003.628 -1.2 +0.8
STTA 188 AB   96986 1991.64 -0.1 +0.8
H 5 137 AB 12900 97242 2003.628 -1.0 -0.5
STFA 48 AB   97876 1991.69 +0.2 -0.3
AC 16 AC 13176 98248 1991.67 +0.2 -1.0
           
STTA 200 AB   98658 1991.73 -0.9 +0.7
ES 25 AF 13376 (2683 03586) 1991.61 -0.2 -0.1
SHJ 314 AF 13374 99002 2003.695 +0.3 +1.5
WEB 12 AB   (1625 00995) 1991.703 +0.2 -0.6
HJ 606 AB   99196 1991.66 +0.3 -0.1
           
STF 2637 AC 13442 99352 1991.65 -0.5 +3.3
S 738 AB 13463 99409 1991.61 -1.6 -0.6
STF 2664 AB   100226 1991.49 -0.3 -0.5
STTA 207 AC 13786 100515 1991.70 +0.3 -1.7
STF 2687 AB 13870 100808 2003.629 +0.2 -0.3
           
STF 2691 AB 13919 101109 1991.68 -0.4 -0.2
STF 2690 A BC 13946 101233 1991.52 +1.0 +0.5
STF 2703 AB   101700 1991.64 -1.1 -0.3
STTA 211 AB   102775 1991.72 +1.7 -2.9
STF 2758 AB 14636 104214 1991.69 +4.4 +1.7     (3)
           
BU 69 AC 14570 103852 1991.44 +0.6 -0.5
STF 2769 AB 14710 104539 2003.784 -0.2 +0.8
STFA 56 AB 15147 106783 2003.629 -0.6 +0.4
GUI 36 CD 15184 106890 2003.620 -0.3 +0.9
STF 2816 AD 15184 106886 2003.620 +0.2 +0.7
           
STT 447 AE 15186 (3191 00346 1991.67 -0.3 0.0
STTA 222 AB   (0555 00887) 1991.88 0.0 -0.2
ES 382 AC 15377 107844 1991.82 -0.2 -0.3
STF 2840 AB 15405 107930 2003.621 +0.6 +0.3
S 800 AB 15434 108073 1991.61 -0.1 +0.0
           
STF 2841 A BC 15431 108119 2003.784 -1.7 +0.2
ARY 45 AB   109275 1991.67 +0.3 +0.0
STF 2872 A BC 15670 (3981 01587) 1991.68 -0.9 +1.2
STF 2893 AB 15764 109659 2003.629 +0.2 +0.4
STTA 234 AC 15951 (3615 00740) 1991.67 -0.2 +0.0
           
STFA 58 AC 15987 110991 2003.629 -0.2 +0.1
STF 2922 AB 16095 111546 2003.625 -0.2 +0.2
STTA 236 AB D 16111 111570 1991.74 -0.8 +0.5
BU 277 AB D 16153 (3209 00191) 1991.63 -0.3 +0.5
HJ 1823 AC 16321 112905 1991.68 +0.2 -0.4
           
STTA 238 AB   112970 1991.72 -0.3 -0.0
STTA 241 AB   11344 1991.66 -0.4 +0.3
S 825 AB 16558 218741 1991.76 -0.5 -0.1
STF 2985 AB 16557 114385 2012.6746 +0.5 -0.4
STTA 245 AB C 16748 115666 1991.64 +0.3 -0.6
           
SHJ 355 AC 16795 115990 1991.59 -0.2 -0.7
STF 3041 A BC 17009 117366 1991.52 +1.6 -1.0
STT 507 AC 17020 117430 2003.629 -1.1 0.0
STF 3044 AB 17079 117768 1991.62 +0.2 -0.5
           

 

 

 

 

 

Table 4: Doubles with significant proper motion differences

 

(All Proper Motions: WDS 2017)

 

Pair Year of C-measurement (O = 2017) RA (primary)             PM (arc-sec/1000yr) DEC (primary)            PM (arc-sec/1000yr)   RA (secondary)             PM (arc-sec/1000yr) DEC (secondary)            PM (arc-sec/1000yr) θ (O-C)

(o)

ρ   (O-C)

(‘’)

                 
HJ 1986 AB 1991 +050 +021   +079 -024 +1.8 +0.1
H 5 18 AD 1991 +051 -032   -002 -003 +0.5 +1.5
H 5 82 AB 1991 -026 -024   +017 +004 -0.1 +1.8
SHJ 40 AB 1991 -029 -078   -001 -001 +3.3 -0.4
S 459 AB 1991 -006 -015   -014 -035 0.0 +1.1
                 
STFA 13 AB 1991 -007 -008   -004 -027 +0.5 -1.0
HJL 1046 AB 1991 -009 -048   -013 -058 -1.3 +1.8
STTA 91 AB 1991 -055 -005   +088 -139 -2.9 +0.8
STF 1321 AB 1991 -153 -056   -155 -066 +6.6 -0.4
S 598 1991 -022 -012   -090 -016 -1.4 -2.8
                 
S 621 AB 1991 -334 -124   +007 -002 +1.6 +6.9
S 621 AC 1991 -334 -124   +000 -001 +2.1 -4.0
STF 1516 AB 1991 -402 +110   +001 -002 -0.3 +10.2
STFA 19 AB 1991 +016 -010   -090 +017 +1.9 -1.1
STTA 127 AB 1991 -176 -058   -104 +011 -1.1 +2.3
                 
STF 2010 AB 2003 -034 -006   -026 -032 -1.0 -0.3
STTA 163 AB 1991 -053 +099   +011 -014 +3.0 -0.4
STF 2278 AB 1991 -021 +039   +004 +013 +1.0 +0.1
                 
STF 2278 AC 1991 -021 +039   +001 +012 +0.9 +0.5
STF 2420 AB 2003 +078 +025   +000 +000 -2.4 +1.0
                 
STTA 177 AC 1991 +002 -012   +125 -196 -2.5 -3.1
STTA 181 AB 1991 +013 -053   -021 +010 -1.3 +1.1
STF 2549 AD 1991 +041 +020   -006 -009 -1.2 +0.2
STF 2637 AC 1991 +059 +098   +005 -056 -0.5 +3.3
STF 2637 AC 1991 +059 +098   +005 -056 -0.5 +3.3
                 
S 738 AB 1991 -011 -017   +001 +001 -1.6 -0.6
STTA 207 AC 1991 +056 +043   -003 -018 +0.3 -1.7
STTA 211 AB 1991 -004 -002   +131 +100 +1.7 -2.9
STF 3041 A BC 1991 +017 -010   +083 -078 +1.6 -1.0

 

Table 5: Alternative Residuals

 

 

  CATALOGUE (date) Residual (O-C)                  PA (o) Residual (O-C) SEPARATION (“)
       
STF 1516 AB (1) Fourth Interferometric (1991) -0.3 +10.2
STF 1516 AB (1) WDS (2015) -1.1 0.0

 

       
STFA 30 BC (2)

 

Fourth Interferometric (1991) * 0.0
STFA 30 BC (2) WDS (2015) -3.0 -1.4

 

       
STF 2758 AB (3) Fourth Interferometric (1991) +4.4 +1.7
STF 2758 AB (3) WDS (2016) +0.2 +0.4

 

 

*Fourth Interferometric Catalogue gives a PA of 15.5 degrees?? WDS (2015) gives 197 degrees and NW measured 194 degrees.

 

Double Star Measurements with an Astrometric Eyepiece in 2016

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.12"]

Neil Webster, REDACTED
E-mail : REDACTED

Introduction

The following measurements were made with a Meade 12-mm astrometric illuminated reticule eyepiece attached to a recently purchased Altair Astro 115-mm refractor (focal length 805mm, f7). The optical train also employed a 2.5x Powermate to give a total magnification of 167.5x. Calibration was achieved over two evenings using the timing transit method as outlined in Teague1 Three separate stars were used and the results (reassuringly close) averaged to give a calibration of: 12".49 ± 0".4 per division on the measuring scale.

Method

Earlier attempts with a smaller scope (SIV 80-mm APO) had indicated the necessity of taking multiple readings to achieve a credible result. Unless stated, each system has 10 separation and 10 position angle measurements (N 20) from which a final result and associated uncertainty were calculated. As expected the later results were, overall, found to be closer to \VDS values especially in P.A. Early P.A. values were made by turning the motor off and allowing the primary to drift and cross the, outer protractor scale. The scope was moved manually in R.A. to allow further measurements to be made. However, even with a relatively small system this was not easy and the following method was adopted:

With the motor on, the two stars were positioned parallel to the measurement-axis with the primary positioned to pass through the centre-point. The system was then steered to the outer scale using the R.A. control on the handset. The value that the primary passed through was noted and the appropriate conversion to the correct P.A. value made afterwards.
This has the advantage that repeated measurements can be, easily made and the scope can be easily slewed to the next system afterwards. The PA results were seen to immediately improve using this method. It, of course, relics on precise polar alignment of the mount so movement in declination is at an absolute minimum.

Duc to the small magnification of the, system the limiting useful minimum separation measurement is about 14" . The accuracy of PA for small separations is also harder to achieve especially if the secondary is very faint. The faintest magnitude used for measurement was 10.3 due partly to local light pollution but also due to the obscuring rcd light used to illuminate the measuring eyepiece.

As most of these systems arc comparatively wide the orbits are, generally very long (30,000 years ) and very few have accurate orbital calculations. Residuals (from the online version of 6th USNO Catalogue of Orbits of Visual Binary Stars) have been given for the few systems calculated.

Residuals from the Fourth Catalogue of Interferometric Measurements have provided a more extensive set of residuals.

References

(1) Teague, E. T. H. (2012) in Argyle, R. W. (ed.), Observing and Measuring Visual Double Stars, Springer
(2) The Cambridge Double Star Atlas, (Mullany J. Tirion pub. Cambridge)
(3) Washington Double, Star Catalogue (Mason, B.D., Wy-coff, G.L. Hartkopf, w.l.):
51
(4) http : // ad. usno . navy .mi1/proj/WDS
(5) Sixth Catalogue of Orbits of Visual Binary Stars (Hartkopf, NV.I., Mason, B.D. & Worley,
http : / /www.usno . navy . mil/USNO/astrometry/optical- IR-prod/wds/orb6/sixth- catalog-of-orbits-o (6) Fourth Catalogue of Interferometric Measurements of Binary Stars:
http : //www.usno . navy. mil/USN0/ astrometry/ optical-IR-prod/wds/int4

[/et_pb_text][et_pb_text admin_label="Full Report" _builder_version="3.12"]

Full Report and tables of results

NW Webb 2016 Report

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

The Caldwell Objects and How to Observe Them

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

Reviewed for the RAS Journal; Observatory, June 2010

1st Edition, by Martin Mobberley (Springer) 2009, Pp 288, 23.1 x 17.5 cm.

Price £24.99 (paperback; ISBN 978-1-4419-0325-9)

This book, as expected, is primarily concerned with the description and details of the Caldwell objects and this is covered to the depth suitable for an amateur astronomer. There is also a section on the compiler of the Caldwell list, Sir Patrick Moore, as well as primers on observing and imaging in general. These additional chapters are not covered in any depth. Whilst they will provide the novice with some guidance, the reader will have to go elsewhere for a comprehensive guide.

The book puzzles me slightly; I’m unsure if I should be using it as a reference book, a book to help plan an observing session or if I should take it to bed and read it from cover to cover. It sets out to be a reference book, with consistent levels of information on all the objects. It has a good index but no summary tables. Used as an observing planning aide it is likely to become tiresome because of the lack of tables, the reader will have to flick through many pages to find what objects are suitable for their equipment and location or use the inside back cover to make their own tables.

The basics for each object are covered on a single page, such as position, brightness, suggestions for finding the object and the best time of year to observe. The author also recommends the best aperture and filters for observing and provides good comprehensive descriptions. A second page for each object is used for charts and images (generally from amateur astronomers). The author’s personality and humour does come through in his writing making the book an easy and enjoyable read (I particularly like Caldwell 8 where the author describes all the great open clusters in Cassiopeia before describing C8 as ‘less than mind blowing’.).

You might be forgiven for thinking that this book is all you need (apart from a telescope!) to begin observing the Caldwell objects. However the charts provided are not suitable for finding the objects and this is pointed out by the author. Despite their low quality and small size, the charts do provide the reader with the general location in the sky and for this they are useful. The charts contain a number of objects and are only printed alongside the first object described and it quickly became irritating having to flick back to previous objects to look at the associated chart, especially when there is ample space for the chart to be repeated for most objects.
For £24.99 I would not buy this book, but if cheaper or given as a gift I would happily add it to my collection.

Reviewed by Simon Dawes

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Philip’s Stargazing with a Telescope

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

by R. Scagell (Philip’s, London), 2009. Pp. 192, 19.5 x 12.5 cm. price £7.99 (paperback; ISBN 978 0 540 09023 5).

This book is aimed at the newcomer to astronomy and is one of a number of similar primers published under the Philip’s title. They are characterised by clear explanations by authors’ expert in the subject with numerous illustrations and clear diagrams  all at moderate cost. The theme of this particular volume is an introduction to the wide-range of optical equipment available to the beginner from binoculars to GO TO catadioptrics. The pros and cons of each type of equipment are covered and the techniques of achieving maximum benefit both by properly setting up the telescope and in the practice of observing are carefully explained.

A chapter on gaining a basic knowledge of the sky is followed by a summary of objects available for study. A final chapter on accessories including filters and cameras (both conventional and digital including web-cams) concludes a remarkably complete survey. Appendices include star maps, on a necessarily reduced scale, and a list of interesting objects is followed by a good glossary and index. One criticism is the lack of information on societies. The website addresses of the AAVSO and the Society for Popular Astronomy (of which the author is Vice President) are noted. At least a reader of this book should know about the BAA as well!

The amount of information contained in this book for the price makes it a great bargain. This reviewer would have been delighted to receive it as a teen-ager. It makes a wonderful stocking filler for Christmas.

R. H. CHAMBERS.

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

The Periods of the Semi-Regular Variable V370 And

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text admin_label="page 1" _builder_version="3.9"]

 The periods of semi regular variable V370 And

[/et_pb_text][et_pb_text admin_label="page 2" _builder_version="3.9"]

 The periods of semi regular variable V370 And page2

[/et_pb_text][et_pb_text admin_label="page 3" _builder_version="3.9"]

 The periods of semi regular variable V370 And page3

[/et_pb_text][et_pb_text admin_label="page 4" _builder_version="3.9"]

 The periods of semi regular variable V370 And page4

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

HD13654 Probably Not An Eclipsing Binary

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text admin_label="Page 1" _builder_version="3.9"]

HD13654PaperPage1

[/et_pb_text][et_pb_text admin_label="Page 2" _builder_version="3.9"]

HD13654PaperPage2

[/et_pb_text][et_pb_text admin_label="Page 3" _builder_version="3.9"]

HD13654PaperPage3

[/et_pb_text][et_pb_text admin_label="Page 4" _builder_version="3.9"]

HD13654PaperPage4

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Multiple Papers on the APT

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="1_4"][et_pb_text admin_label="APT Image" _builder_version="3.9"]

ATM_JWapt

[/et_pb_text][/et_pb_column][et_pb_column type="3_4"][et_pb_text _builder_version="3.9"]

Here we describe the construction and scientific output of the Automatic Photometric Telescope, built in the mid 1980's the APT became the most productive variable star observation platform in the UK - possibly the world.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="1_2"][et_pb_text admin_label="APT Block diagram" _builder_version="3.9"]

[singlepic id=420 w= h= float=center]

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_text _builder_version="3.9"]

Another first for Crayford Manor House Astronomical Society is the automatic photoelectric telescope designed and built by Jack Ells. This instrument undertakes photometry unaided throughout the night and was the most productive amateur telescope in the UK during it's use.

[/et_pb_text][et_pb_text admin_label="APT Result" _builder_version="3.9"]

[singlepic id=421 w= h= float=center]

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="4_4"][et_pb_text admin_label="List of papers" _builder_version="3.9"]

Papers:

Microcomputer-assisted photoelectric photometry system

PAPERS_JBAA_1989-99-6 part 1

PAPERS_JBAA_100-1-1990 Part 2 and 3

PAPERS_BAAJ_107-6-1997

Construction Notes:

APT_64K_BBC_Micro_B_Code

APT_Construction_Notes_1

APT_Construction_Notes_2

APT_NotesonCounting

APT_PowerSupply

APT_PulseCountingCircitry

APT_Research_Notes_1

APT_Research_Notes_2

APT_StarCharts_D-V

APT_StartCharts_A-C

 

 

 

 

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

Discovery of Asteroid 1997 WQ28 by Crayford Member

[et_pb_section bb_built="1"][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

On the evening of 30th November 1997 we were obtaining CCD frames for the UKNova/ Supernova patrol using a 10"LX200, operating at f3.3 and StarlightXpress. At 21.30UT we imaged a suspect object near ngc765, a type SBb/Sc, 14th mag spiral galaxy in Aries. Estimating the magnitude at brighter than 16 we initially thought we might have discovered a second supernova as this was rather bright for a new asteroid and no known asteroid was in the region of the galaxy. We used the Sky v4 to control the LX200 and always load the 34000 minor planets before we start patrolling so are forewarned of any asteroid in the field. We also checked Megastar and the new service to check supernova suspects for minor planets at the Central Bureau for Astronomical Telegrams Web site:

A second image 25 minutes later clearly showed movement, ruling out a supernova. Ignoring our chagrin we took a final image at 22.28UT, measured the positions using astrometrica, a commercial astrometry software package and sent a report to Martin Mobberley, deputising for Guy Hurst who was away on business.

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="1_2"][et_pb_text _builder_version="3.9"]

[caption id="attachment_1671" align="aligncenter" width="184"] Asteroid 1997 WQ28 discovery image by Mark Armstrong[/caption]

[/et_pb_text][/et_pb_column][et_pb_column type="1_2"][et_pb_text _builder_version="3.9"]

[caption id="attachment_1672" align="aligncenter" width="178"] Asteroid 1997 WQ28 Follow-up image by Stephen Laurie[/caption]

[/et_pb_text][/et_pb_column][/et_pb_row][et_pb_row][et_pb_column type="4_4"][et_pb_text _builder_version="3.9"]

The skies remained cloudy until on 3rd December we imaged six overlapping fields twice, approximately one hour apart to try and recover the suspect. At this stage we had to estimate where we thought the suspect should be as we don't have the software to calculate a rough ephemeris from initial observations. We picked up only one object showing movement and not appearing in the `Real Sky` field but were doubtful that it was the suspect as it appeared at least 0.5 magnitude fainter and CCD images taken near the ecliptic can often reveal faint asteroids. However we measured the new positions and reported to Guy Hurst.

Meanwhile on 2/3 December Stephen Laurie, having seen our original report but unable to respond immediately due to business, imaged an object in the approximate position. Using Computer-Aided Astrometry, another commercial software package, he imputed all the measured positions to date and concluded that they were all the same object!
Guy reported the observations to the Minor Planet Centre on 6th December and the asteroid received the official designation 1997 WQ28. We have now secured 28 observations over a 55 day arc and the object has still not been linked to a previously designated object. Our previous `discovery` 1997 DV was linked to 1990 QN5, discovered at Palomar!

Article originally by Mark Armstrong

[/et_pb_text][/et_pb_column][/et_pb_row][/et_pb_section]

TOP
Protected by CleanTalk Anti-Spam